segunda-feira, 12 de julho de 2010

Divisibilidade por 7

Seja um número inteiro N=mcdu= 10(mcd)+u=
={{7+3)(mcd)+(7-6)u=[7mcd+7u]+3mcd-6u=3[mcd-2u]
Veja que N=10(mcd)+u--> vamos chamá-lo de 10k+i e
N=3[mcd-2u]=k-2i
Demonstração:
10k+i é múltiplo de 7 e k-2i é múltiplo de 7.
Se 10k+i é múltiplo de 7, então existe um inteiro m tal que 10k+i=7m e portanto, k-2i=2(7m-10k)=7(3k-2m) o que implica k-2i ser múltiplo de 7.
Se k-2i é múltiplo de 7, então existe um inteiro n, tal que k-2i=7n o que implica 10k+i=10[7n+2i]+i=7(10n+3i] o que implica 10k+i ser múltiplo de 7.
Como queria demonstrar.
Keiji

Nenhum comentário:

Postar um comentário